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Radiative Transfer in Falling Snow
A Two-stream Approximation

GARY KOH

INTRODUCTION

The effects of multiple scattering must be considered to describe the transmission of visi-
ble light through an optically thick atmosphere containing haze, fog, clouds or solid aerosol
particles. The rays or the photons that propagate through the atmosphere may undergo
many scattering events before entering or escaping the field of view of a detector located

downstream. Simple analytical expressions that are easy to interpret and that adequately rep-
resent the important features of the multiple scattering process can be obtained using various

two-stream approximations to radiative transfer. Typically, the two-stream models param-
eterize the radiative properties of the atmosphere so that the intensities of the reflected and
transmitted radiation can be calculated as a function of the optical depth, the single scatter-
ing albedo and the moments of the phase function.

The two-stream approximations are usually derived by beginning with Chandrasekhar's
(1960) exact equation of radiative transfer and by making various approximations (Meador
and Weaver 1980, King and Harshvardhan 1986). Bohren (1987) presents a derivation of a
simple two-stream approximation in which the photons are constrained to be scattered strict-
ly in the forward and backward directions, He avoids the use of Chandrasekhar's equation

and gives a derivation similar to that of Schuster (1905), who initiated the two-stream radia-
tion transfer theory long before the exact equation was developed. This report derives the
two-stream approximation presented by Bohren (1987) by starting with the exact equation of
radiative transfer to show the relationship between the approximate and the exact solutions.
The simple two-stream theory is then used to describe the effects of multiple scattering on a
parallel beam of light transmitted through falling snow. The comparison of the approximate
results with the experimental results shows that the simple two-stream theory can be used to
describe the transmission of visible light through falling snow.

DESCRIPTION OF THE PROBLEM

A parallel beam of light incident on a snow-filled atmosphere is scattered and absorbed so
that the intensity of light reaching the detector located downstream decreases. To describe
this decrease in intensity, it is convenient to distinguish between the incident intensity, Ii, the
reduced (unscattered and unabsorbed) intensity, Ir, the diffuse (scattered) intensity, Id, and
the total intensity, It. Figure 1 is a diagram illustrating the problem.

Id

Figure 1. Relationship between the in-

cident intensity (I), the reduced inten-

sity fir) and the diffuse intensity (Id). 7
is the optical depth, L is the path length

'C =0 o T = 06W" L and A = cosO.



Tl- _-duccd intensity is the portion of the incident light that travels the distance L without
underboing scattering and absorption and satisfies the equation

dr = -Ir ex dL (1)

where o,, is the extinction coefficient. The extinction coefficient is defined as the sum of the
absorption coefficient and the scattering coefficient. This equation integrates to yield the fa-
miliar Beer-Lambert law and the reduced intensity is expressed as

Ir = Ii exp( - r) (2)

where the optical depth, T, is defined as axt " L.
The diffuse intensity represents the portion of the incident light that is scattered one or

more times and that travels in all directions according to the scattering characteristics of the
snow particles. The equation that describes the transmission of diffuse intensity through a
plane parallel atmosphere is the integro-differential equation of radiative transfer (Chand-
rasekhar 1960, p. 22)

c 1 2w

/- Id(r,P,6) = Id(T,/A, ) -I I /d(-,/u',0
') Q(',O'" /,0)d0'a'

-1 0

where 1, is the cosine of the angle 0 measured from the axis normal to the parallel atmos-
phere, and o is the corresponding azimuthal angle. The phase function J( t ',&; tk) de-
scribes a single scattering event from the direction / ',€' into the direction to. The incident
beam comes from -g, direction..

The total intensity is the sum of the reduced intensity and the diffuse intensity and is ex-
pressed as

t = l, + Ad .  (4)

From eq 2 and 3 it is seen that the reduced intensity diminishes exponentially while the be-

havior of the diffuse intensity is more complex. To avoid the extensive computations that are
required to solve for the diffuse intensity, a simple two-stream approximation is used.

TWO-STREAM APPROXIMATION

The two-stream approximation used in this study is obtained by making several assump-
tions. It is initially assumed that the diffuse intensity is azimuthally independent and con-
stant over the forward and the backward hemisphere (Schuster's approximation) so that

lf'(rU); IP > 0

/d(r,,u) = (5)
'-(r,/); A < 0

where l&(r,1,) and I -(r,L) represent the intensities for the diffuse radiation in the forward
and backward hemispheres respectively. The diffuse radiation is then constrained to travel in
two directions only, exactly forward and exactly backward, so that the intensities can be ex-
pressed as I'(r, + 1) and ld-(r,- 1) respectively. Applying these constraints to eq 3 results
in the following two coupled linear differential equations
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d (T) - (r)+F(-l;+l)I(r)+F(+ l;+ l) Idr);= + I

+ F(- 1; + l) Ii exp( -r) (6a)

d
dT (T) IdC )-F(+;-1ld(r) -F(-l;- ) I (T) ~ -I

-F(- 1; - 1) i exp(- T) (6b)

where IdIT) represents the light that comes from - 1 direction and travels toward + 1 direc-
tion and Idr(T) represents the light that comes from + 1 direction and travels toward - 1 di-
rection. F(p ';/) is the fraction of light incident on a snow particle from the p' direction that
is scattered in the a direction. For example, F(- 1, - 1) and F(+ 1, + 1) represent the frac-
tion of the light that is scattered in the direction from which the light came (backscattering).

The values of F ';p) approximate the integration in eq 3 for the forward and backward
hemispheres so that

1 0 2
1F(- 1+1)=QA ,/;,O)dO'd' (7a)

-1 0

1 ~I 27rF(+1;+1) - (7b4 J  Q (A' , O  ';/,O)dO 'dtL' ( b

0 0

F( + 1; - 1) and F( + 1; + 1) can be similarly represented.
The phase function of snow is not known, therefore the integration in eq 7a and 7b must

be carried out using some approximate phase function. The merits of performing such com-
plex integrations using approximate values for the phase function are questionable. F(i ';A)
may be more conveniently approximated in terms of the asymmetry parameter, g, of the
phase function and the single scattering albedo, wo, so that (van de Hulst 1980)

F(+1;-1) = F(-1;+1) = +g) (8a)
2

(I -g) (b
F(+I;+1) = F(-1;--1) = o 0 -2- (8b)

The asymmetry parameter, g, is the mean cosine of the scattering angle and defines the
degree of anisotropy of a phase function. The values for g range from - 1 to + 1.

For isotropic scattering and symmetrical scattering about 90', the asymmetry parameter is
0 so that the values of F(u ';/p) in eq 8a and 8b are one-half. In other words, an isotropic scat-
terer scatters one-half of the incident light in one direction and the other half in the opposite
direction. For a highly anisotropic scatterer in the forward direction the value for g ap-
proaches 1. In this case eq 8a and 8b approach I and 0 respectively. This means that most of
the light is scattered in the direction of the incident beam (forward scattering). Similar rea-
soning can be applied to a scatterer whose asymmetry parameter approaches - 1.

By substitution of the results from eq 8a and 8b into eq 6a and 6b, a two-stream model can
be expressed by

dr
Sjd(-7) + WO P - (T) +W 2. 21 g +w.( exp(- r) (9a)
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d) ( -g)W- 4-(T) - d(T)-o (Io + g) dd-(T)- (r)- - 2. iexp(-r). (9b)

These coupled differential equations can be solved to determine the transmission of radia-
tion using the boundary conditions Ia'(0) = 0 at the start of the transmission path and I-(r)
= 0 at the end of the transmission path.

A second set of two-stream approximations is derived from eq 9a and 9b, which are iden-
tical to those presented by Bohren (1987). This is done by suppressing the term containing
the incident flux Ii so that the equations become

£It-(:') =-It-(r) + wo 0 t() +w-(1o g /t-(T) (10a)

dd It tr)t-IT) -I oo 0+g) It-() - 0 g) t-(T) (lOb)W 2 2

where the intensity It now refers to the total intensity (Id + I) and not just the diffuse intensi-
ty. Equations 1Oa and lOb are solved (Appendix A) with the boundary conditions I'(O) =i
and I-(T) = 0 at the start and end of the transmission path, respectively, to yield the follow-
ing expression for transmittance T(-,g)

T(-,g) = 1(T) = 1 (11)
1+ (1 -g)2

This equation is used to describe the light transmission measurements that were made in fall-
ing snow.

TRANSMISSION THROUGH SNOWFALL

Visible light transmission data were obtained during snowfalls over a path distance of 650
ni. i ne source was a nearly parallel beam of light with a diameter of 0.6 m and a divergence
of 20 mr. The receiver consisted of a detector located at the focal point of a 0.6-m-diameter
lens with a field of view of 0.6 mr. During the transmission measurements, the snow mass
concentration (snow mass per unit volume of air) was continuously measured at the mid-
point of the transmission path.

Equation II shows that the transmission of visible light through falling snow can be deter-
mined if the optical path and the asymmetry parameter are known. The optical depth of
snow-filled atmosphere is

r = am'Ms'L (12)

where M, is the snow mass concentration, and the snow mass extinction coefficient, a,, is
defined as the extinction cross section per unit particle mass. The snow mass extinction coef-
ficient is typically around 0.03 m2/g but it does vary depending on the snow crystal type.

The asymmetry parameter of snow was estimated to be 0.9 for this study. The value of 0.9
corresponds to the asymmetry parameter in the visible wavelength for an ice sphere with size
similar to a snow particle. Although the spherical approximation for snow is an extreme
idealization, it is used to obtain insights into the scattering process. Until the phase function

4



of snow is known, the use of a spherical equivalent phase function may be the most appro-
priate approximation.

From eq 2, 4 and 11, the transmitted diffuse intensity can be expressed as

i(rg) = + (I-g) -I, exp( - r). (13)

The reduced intensity (eq 2) and the diffuse intensity components (eq 13) of the transmitted
intensity are calculated as a function of snow mass concentration for a transmission path of
650 m. The results that were calculated for a unit incident intensity are shown in Figure 2. It
is seen that the diffuse intensity becomes dominant when the snow mass concentration ex-
ceeds 0.2 g/ml, which is equivalent to an optical depth of 3.9.

1 .0 - - , - - , - - - , - - , - -

Tolntensity

0.8 //" . .

/ Diffuse Intensity
o0.6

0.4 ,

I, Reduoed Intensity
0.2 ', Figure 2. Relative contributions of the re-

duced intensity and the diffuse intensity

"". to the total intensity as a function of snow
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 mass concentration for a path distance of

Snow Mass (g/m
3) 630 m.

Thus far it has been assumed that all the diffuse radiation transmitted in the forward di-
rection contributes to the total intensity. However, because of the finite size of detectors
used to measure the transmitted light and the spatial and angular spreading of the diffuse
beam, only a fraction of the diffuse radiation is actually recorded. Therefore, in order to
correctly interpret the experimental results, the measured diffuse radiation I - (r,g) is ex-
pressed as

Ij- (r,g) = C(,r,g)•Ij"(r,g) (14)

where the correction, C(r,g), is the fraction of diffuse radiation that is actually measured.
The measured transmittance, T'(r,g), is then expressed as

T'(r,g) = exp(-,r) + C(r,g)'lj(r,g). (15)

The correction factor is dependent on the ratio of the effective detector area to the cross-
sectional area of the transmitted diffuse beam. In other words, for a given detector size, C(r,g)

decreases as the diffuse beam spreading increases. Therefore, information about diffuse
beam spreading is required to determine the correction factor. The spreading of the diffuse
beam is a complicated function of the optical depth and the snow phase function, therefore
simplifying assumptions are made to determine the correction factor.

The diffuse beam diameter increases as the optical depth increases. If this increase is linear
with respect to the optical depth, C(r,_g) will be inversely proportional to the square of the
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optical depth. The rate of increase is determined by the phase function; the beam spreading
is less when the phase function is peaked in the forward direction. In other words, for a given
opti,., depth, C(r,g) will increase as the asymmetry parameter increases.

Another consideration for estimating C(r,g) is the single scattering limit at low optical
depths. At low optical depths, the scattered radiation that is measured is dominated by a

sharp diffraction peak in the near-forward direction. Fraunhofer diffraction theory is com-
monly used to correct for the effects of single scattering on measured transmission (Sea-

graves 1983, Bohren and Koh 1985). These calculations indicate that for visible radiation, a

significant portion of the light contained in the first diffraction lobe is measured by a typical
transmission system (approximately 35 to 40% of all the scattered radiation is measured at
low optical depths). From eq 8b it is seen that a particle with an asymmetry parameter of 0.9
scatters 95/'uo of the light in the forward hemisphere. Therefore, the limiting value of C(r,g)
at low optical depth (ratio of the scattered radiation that is measured to the radiation scat-
tered in the forward direction) is expected to range from 0.37 to 0.42. A correction factor of
0.4 is used for the low optical depth limit in this report.

By combination of the above-mentioned criteria required for the correction, the following

expression is derived for the C(r,g)

C(.-g) 0.40 (16)
i +(1 -g) 2 "

Figure 3 illustrates values for C(r,g) for several asymmetry parameters. This figure shows
that eq 16 satisfies the criteria discussed above. The values for C(r,g) decrease as the optical
depth increases, increase as the asymmetry parameter increases, and also approach the single
scattering correction limit of 0.40 at the low optical depths.

The utility of any model is judged by its ability to predict experimental results. Figure 4
shows the comparison of the light transmission measured through falling snow with those
calculated using the two-stream approximation with the correction factor applied. The figure
shows that the experimental results can be described with reasonable acuracy without the use
of an empricial adjustment. The transmission data presented in Figure 4 were selected so that
the snow crystal type and size were similar through the range of the snow mass concentration.

0 5 1 0 --

04 Asym-ety Paramere, 08 1
09

~0 3L o,-- --\ --- 0

) ''\

o,0 ...1. 
02r t +

0 2 4 6 8 10 12 14 0 01 02 03 04 05 06 7

Optical Depth Snow Mass (gim
3
)

Figure 3. Correction for t he fraction of Figure 4. Comparison of the transmit-
diffuse intensity that is measured by a tance calculated from the two-stream ap-
detector (eq 16). The asymmetry param- proximauion with the experimental te-
eters (g) are 0.9, 0. 7, 0.5 and 0.1. sults. The solid line represents the two-

stream results u~ing eq 15 and 16f.
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It is emphasized that the values for C(r,g) were determined using qualitative arguments.
The good agreement with the experimental results obtained using the qualitative arguments
may be coincidental. More work is required to justify the analytical expression for C(r,g).
Nevertheless, it is important to point out that a correction factor that is qualitatively similar
to the one presented is required to interpret light transmission measurements through an op-
tically thick snowfall.

CONCLUSIONS

The parameters (the optical depth and the phase function) that are required for calculating
the radiative properties of falling snow can only be approximated. Therefore, complex and
time-consuming methods to solve the exact radiative transfer equations are not necessary
when one is interested in interpreting experimental results. A simple two-stream approxima-
tion to radiative transfer where the light is constrained to travel in two directions only (for-
warl and backward) is used to describe the transmission of visible light. A correction factor
that accounts for the portion of the diffuse radiation that is actually measured by a detector
is then applied. The comparison of the light transmission data obtained in snowfall with
those calculated using the two-stream approximations is in good agreement over a wide
range of optical depths.
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APPENDIX A: TWO-STREAM APPROXIMATION SOLUTION

Adding and subtracting the following differential equations

SI-(r) lt-(r)- + g 2 () 1 2 (AI b)

d2 2

result in the following:

d (/t_+ it_) = (I -wVog)(/-- It-) (A2a)

dr

dr (I-It-) = (I- +o)(W+It-)- (A2b)

For the case where absorption is neglible (o = 1), eq A2a and A2b become

dWd- ( I -+ IA- ) = (I - g) (t-- It-) (A3a)

d ( 4 - 4- ) = 0. (A3b)

The general solutions to eq A3a and A3b are

IC- It'-= C. (A4a)

I-+ It - C2 - (I - g).- C," 7- A4b)

which can be reexpressed as

4 1= ( l , (1I-_ g) C, "r(A5a)
2

= I(C 2 -Ci)- (1g) C,.r (A6b)

where constants C, and C, are determined by the boundary conditions.
Using the boundary conditions

It-(r) = i for r = 0

It(r) = 0 for r = aex,'L

the following is derived:

C,+C, = 21i (A7a)

C, - C, = (I - g)- C, •-r. (A7b)
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These equations can be manipulated to show that

C' = A (M8)
1+(1-g).'

+2

The transmitted radiation, T, is then expressed as

T- Lt =. (A9)
Ii I+ (1-g)T

10



A f icsimile catalog card in Library of Congress MARC format is reproduced
below.

Koh, Gary
Radiative transfer in falling snow: A two-stream approximation / by Gary

Koh. Hanover, N.H.: U.S. Army Cold Regions Research and Engineering Labor-
atory; Springfield, Va.: available from National Technical Information Service,
1989.

ii, 14 p., illus., 28 cm. (CRREL Report 89-6.)
Bibliography: p. 7.
1. Cold regions. 2. Light scattering. 3. Light transmission. 4. Snow. 5. Winter

warfare. I. United States Army. II. Corps of Engineers. III. Cold Regions Re-
search and Engineering Laboratory. IV. Series: CRREL Report 89-6.


